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SYNOPSIS 

Thermal conductivity and mechanical properties such as tensile strength, elongation at  
break, and modulus of elasticity of aluminum powder-filled high-density polyethylene com- 
posites are investigated experimentally in the range of filler content 0-33% by volume for 
thermal conductivity and 0-50% by volume for mechanical properties. Experimental results 
from thermal conductivity measurements show a region of low particle content, 0-12% by 
volume, where the particles are distributed homogeneously in the polymer matrix and are 
not interacting with each other; in this region most of the thermal conductivity models for 
two-phase systems are applicable. At higher particle content, the filler tends to form ag- 
glomerates and conductive chains resulting in a rapid increase in thermal conductivity. 
The model developed by Agari and Uno estimates the thermal conductivity in this region. 
Tensile strength and elongation at  break decreased with increasing aluminum particles 
content, which is attributed to the introduction of discontinuities in the structure. Modulus 
of elasticity increased up to around 12% volume content of aluminum particles. Einstein's 
equation, which assumes perfect adhesion between the filler particles and the matrix, ex- 
plains the experimental results in this region quite well. For particle content higher than 
30%, a decrease in the modulus of elasticity is observed which may be attributed to the 
formation of cavities around filler particles during stretching in tensile tests. 0 1996 John 
Wiley & Sons, Inc. 

INTRODUCTION 

The use of metal powder as filler in polymers relates 
chiefly to applications requiring a certain degree of 
electrical conductivity, magnetic permeability, sound 
absorption, and improved thermal conductivity. The 
composite material is more rigid than pure polymer 
and the addition of metal particles to polymer during 
injection has the effect of reducing internal stresses 
in injection-molded parts. Metal-filled polymers are 
used widely for electromagnetic interference shields; 
they have the advantages of being less costly and of 
lighter weight than the metals. Metal-filled polymers 
find outlets in other specific applications such as 
discharging static electricity, heat conduction, elec- 
trical heating, and converting mechanical signals to 
electrical signals. To make adequate use of metal 
powder-filled polymers, the variation of physical 
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properties with the kind and percentage of filler ma- 
terials must be known. 

Extensive studies have been carried out with 
metal-filled thermosets, but corresponding reports 
on their thermoplastic counterparts are rather 
scanty. Among those, studies carried out by Agari 
and Uno' on thermal and electrical conductivities 
of polyethylene filled with copper particles and of 
polymethyl methacrylate filled with aluminum par- 
ticles may be cited. More recently, studies on ther- 
mal, rheological, and mechanical behavior of alu- 
minum- and nickel-filled polypropylene have been 
reported by Maiti and M a h a p a t r ~ . ~ - ~  

THEORY 

Thermal Conductivities 

There is no single model which predicts effective 
thermal conductivity of two-phase materials for all 
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possible combinations of materials and for all filler 
concentrations. Reviews of many of these models 
are given by Progelhof, Throne, and Ruetsch? Cheng 
and Vachon: Godbee and Ziegler: and Agari and 
U ~ O . ~  Some of the most frequently used models are 
explained with the conditions of applicability. 

Using potential theory, Maxwell'' obtained a 
simple relationship for the conductivity of randomly 
distributed and noninteracting homogeneous 
spheres in a homogeneous medium: 

Where key kp, and k ,  are, respectively, the thermal 
conductivities of the composite (metal particle-filled 
polymer), continuous phase (polymer), and discrete 
phase (metal particles), and 4 is the volume fraction 
of filler (discrete phase). This model predicts fairly 
well the effective thermal conductivities at low filler 
concentrations, whereas for high filler concentra- 
tions, particles begin to touch each other and form 
conductive chains in the direction of heat flow, SO 

this model underestimates the value of effective 
thermal conductivities in this region. 

Starting with Tsao's probabilistic model," Cheng 
and VachonI2 assumed a parabolic distribution of 
the discontinuous phase. The constants of the par- 
abolic distribution were evaluated as a function of 
the discontinuous phase volume fraction. The 
equivalent thermal conductivity of a unit cube of 
the mixture is derived in terms of the distribution 
function and the thermal conductivity of the con- 
stituents. The effective thermal conductivity is given 
for the case k ,  > kp 

1 - 1 

ke d C * ( k p - k , ) ( k p + B ~ ( k m - k p ) )  
_ -  

Vkp + B(k ,  - k,) + B / 2 d C .  (k, - k,) 
I/kp + B * ( k ,  - kp) - B / 2 V C - ( k p  - k,) 

X In 

where B = d3.$/2, C = - 4 . m .  
For two-phase materials for which the thermal 

conductivity of the continuous phase is much smaller 
than the thermal conductivity of the discrete phase, 
kp 4 k, or km/kp > 100, as long as 4 < 0.667, effective 
thermal conductivity of the composite may be ap- 
proximated by the second term of eq. ( 2 )  

kP ke x - 
1 - B  (3) 

The semitheoretical model proposed by Lewis and 
Nielsen13 is derived by a modification of the Halpin- 
Tsai equation14 to include the effect of the shape of 
the particles and the orientation or type of packing 
for a two-phase system 

The constant A is related to the generalized Einstein 
coefficient kE15J6 

The constant A depends upon the shape and ori- 
entation of the dispersed particles. 4, is the maxi- 
mum packing fraction of the dispersed particles, 
which is defined as the true volume of the particles 
divided by the volume they appear to occupy when 
packed to their maximum extent. The values of A 
and for many geometric shapes and orientation 
are given in tables.17 For randomly packed spherical 
particles, A = 1.5 and Cp, = 0.637, whereas for ran- 
domly packed aggregates of spheres or for randomly 
packed, irregularly shaped particles, A = 3 and 4, 
= 0.637. 

In the range of high volume content, the particles 
touch each other and form agglomerates and chains. 
Maxwell's equation is no more valid in the region 
where particles begin to touch each other. Agari and 
Unol propose a new model for filled polymers, which 
takes into account the parallel and series conduction 
mechanisms. According to this model, the expression 
that governs the thermal conductivity of the com- 
posite is 

where C1, C,  are experimentally determined con- 
stants of order unity. C1 is a measure of the effect 
of the particles on the secondary structure of the 
polymer, like crystallinity and the crystal size of the 
polymer. C, measures the ease of the particles to 
form conductive chains, the more easily particles 
are gathered to form conductive chains, the more 
thermal conductivity of the particles contributes to 
change thermal conductivity of the composite, C, 
becomes closer to 1. 
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Mechanical Properties 

In a two-phase composite made up of a continuous 
matrix and particle fillers, the type, the concentra- 
tion, the size, the shape, and the orientation of the 
filler particles are important factors in determining 
the mechanical and physical properties. Among sev- 
eral other factors that can greatly affect the me- 
chanical behavior of filled systems, the strength of 
the adhesive bond between different phases, the type 
of dispersion, and the amount of particle agglom- 
eration are especially important. Unfortunately, 
these factors are often difficult to separate and to 
evaluate in a quantitative manner. Although there 
is no good general theory about the stress-strain 
behavior of filled systems, it is known from obser- 
vations that generally fillers cause a large decrease 
in elongation to break and also fillers often decrease 
the tensile strength of a material. The simple model 
developed by Nielsen” explains in a semiquantita- 
tive manner many of the stress-strain properties of 
filled systems. For the case of perfect adhesion, and 
for any kind of a stress-strain curve, the model pre- 
dicts that the elongation to break of a system filled 
with particles (E , )  of approximately spherical shape 
is: 

E ,  = EP(l - 41’3) (7) 

where eP is the elongation at  break of the unfilled 
polymer. 

Because of large stresses and strains encountered 
during tensile tests, dewetting is often observed. 
Dewetting is the result of the formation of voids 
during the stretching of a specimen due to poor in- 
terfacial adhesion, or it can be due to the breaking 
up of aggregates of low strength. Tensile strength 
and modulus drastically decrease after dewetting 
takes place. As the concentration of the filler in- 
creases, the lower the elongation at  which dewetting 
takes place. For the case of no adhesion between the 
filler and the matrix, the tensile strength of the 
composite ( c,) may be expressed as” 

a, = cp(l - b * 42’3) 

where ap is the tensile strength of the matrix polymer 
and b is a constant. The factor “b” accounts for the 
adhesion quality between the inclusion and the ma- 
trix. b = 1.1 describes dense hexagonal packing in 
the plane of highest density; b = 1.21 represents the 
extreme case of poor adhesion with spherical inclu- 
sions for the minimum cross section between spher- 

ical beads. In general, the lower the value of “b” 
below 1.21, the better the adhesion. 

Many equations have been developed for the 
elastic modulus of a material filled with spherical 
particles. The simplest theoretical equation is the 
Einstein’s equation,” which is valid only at  low con- 
centrations of filler and which assumes perfect 
adhesion between the filler and the polymer matrix, 
as well as perfect dispersion of individual filler par- 
ticles 

E, = Ep(l + 2.54) 

where E, and Ep are, respectively, the modulus of 
elasticity of the composite and the polymer matrix. 

For the case where the polymer matrix slips by 
the spherical filler particles rather than adhering to 
them, Einstein worked out a theory where the mod- 
ulus of the composite is given by the equation: 

If the bond or adhesion between the filler and the 
polymer is weak, the bond may break when the load 
is applied. The polymer will then deform more than 
the filler so that elliptical cavities or voids develop 
around each filler particle. In this case a decrease 
in the modulus of elasticity is observed with in- 
creasing particle content. 

In actual practice there may not be perfect adhe- 
sion, and the particles may be in the form of base 
aggregates rather than being individually sur- 
rounded by matrix. These are important factors that 
are often difficult to measure experimentally. For 
these reasons, there is a lot of scatter in experimental 
data on filled systems, and the agreement between 
theory and experiment is often not very good. Even 
for the case of perfect adhesion when high stresses 
are applied, the interfacial bond may break, and the 
adhesion is no longer perfect. Thus, the magnitude 
of the applied stresses often determines whether or 
not there is perfect adhesion. 

EXPERIMENTAL 

Sample Preparation 

The matrix material is a commercial high-density 
polyethylene in powder form, with a density of 0.968 
g/cm3 and a melt index of 5.8 g/10 min. The metallic 
filler is aluminum in the form of fine powder, with 
particles approximately spherical in shape and par- 
ticle size in the range of 40-80 microns (Fig. 1). The 
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Figure 1 
particles. 

Microscopic photograph of the aluminum 

solid density of aluminum is 2.7 g/cm3 and its ther- 
mal conductivity 204 W/m K. 

Composite samples are prepared by the mold 
compression process. In order to obtain a homoge- 
neous mixture, HDPE and aluminum powders are 
mixed at  various volumetric concentrations in a 
tumble mixer for 20 min. The calculation of volu- 
metric concentrations is based on solid densities of 
the constituents. The relationship between the vol- 
ume fraction (4) and the weight fraction (p) of alu- 
minum particles in the composite is given by 

where pm and p p  are, respectively, the densities of 
the metal particles (A1 particles) and of the polymer 
(HDPE). The mixed powder is then melted under 
pressure in a mold and solidified by air cooling. The 
process conditions are: molding temperature of 
185'C, pressure of 4 MPa, heating residence time 
of 20 min for samples prepared for thermal conduc- 
tivity measurements, and heating residence time of 
10 min for samples prepared for tensile strength 
tests, cooling residence time of 50 min under pres- 
sure for both cases. The resulting samples for ther- 
mal conductivity measurements are rectangular in 
shape of 100 mm length, 50 mm width, and 17 mm 
thickness, whereas the standard samples for tensile 
strength tests are obtained from sheets of 2 mm 
thickness. Homogeneity of the samples is examined 
using a light microscope. Aluminum particles are 
found to be uniformly distributed in HDPE matrix 
with no voids in the structure. 
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Figure 2 Predicted and experimental values of thermal 
conductivity of high-density polyethylene filled with alu- 
minum particles. 

Measurements 

Thermal conductivity measurements are carried out 
in a Shotherm QTM thermal conductivity meter us- 
ing the modified hot wire method. A thin straight 
wire through which a constant electric current is 
passed generating constant heat (Q)  per unit length 
of wire, per unit time, is placed between two rectan- 
gular shaped materials, the first one is an insulating 
material of known thermal properties which is a part 
of the measuring probe and the second one is the 
sample for which the thermal conductivity has to 
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Figure 3 Stress-strain curves of pure HDPE and 
HDPE-A1 composites with 10% and 20% of A1 concen- 
trations by volume. 
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Figure 4 
posite versus volume percent of Al. 

Relative tensile strength of HDPE-A1 com- 

be measured. A constant power is supplied to the 
heater element and the temperature rise A T  of the 
heating wire is measured by a thermocouple and re- 
corded with respect to time during a short heating 
interval. The thermal conductivity (K) of the sample 
is measured from the temperature-time (AT- At) 
record and power input (Q) according to the equation 

where F and H are specific constants of the probe 
to be determined with materials of known thermal 
conductivities. By using this method, the thermal 
conductivity is measured with an accuracy of f5% 
and reproducibility of +2%. For each specimen the 
thermal conductivity is measured five times and the 
mean values are reported. 

Tensile tests are performed at room temperature 
(20°C) with an Instron Universal Testing Machine 
(Model 1114), the strain rate being 1 mm/min, initial 
crosshead separation 5 cm. At  least four specimens 
are tested in each case, the average value is reported 
and the standard deviation is shown in figures. 

RESULTS AND DISCUSSION 

Thermal Conductivities 

Thermal conductivity measurements are performed 
on high-density polyethylene filled with aluminum 
particles up to a volumetric fraction of 33%. The 
experimental values of thermal conductivity are 

Experimptal data 
NielsenModel 
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Figure 5 
versus volume percent of Al. 

Elongation at  break of HDPE-A1 composite 

compared with the calculated values of Maxwell, 
Cheng and Vachon, Lewis and Nielsen, and Agari 
and Uno models (Fig. 2). As aluminum particles form 
aggregates and their shapes are not perfectly spher- 
ical, the shape factor "A" in the Lewis and Nielsen 
model is taken equal to 3, and $,,, = 0.637. At low 
particle content, $ < 12%, the increase in thermal 
conductivity with increasing volume content of alu- 
minum filler is slow; for 12% A1 content, the thermal 
conductivity is 1.8 times that of pure HDPE. Alu- 
minum particles are dispersed in the polymer matrix 
and they are not interacting with each other; all the 
models, especially the Cheng and Vachon model, 
predict the thermal conductivity in this region well. 
For particle content greater than 12%, conductive 
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Figure 6 
versus volume percent of Al. 

Modulus of elasticity of HDPE-A1 composite 
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(b) 
Figure 7 Microscopic photographs of aluminum pow- 
der-filled HDPE composites. ( a )  20% volume fraction of 
A1 particles, (b)  33% volume fraction of A1 particles. 

chains are exponentially formed by aluminum par- 
ticles, causing a large increase in effective thermal 
conductivity of the composite. All the models, except 
Agari and Uno, fail to predict thermal conductivity 
in this region. 

The Agari and Uno model predicts quite well the 
thermal conductivities of the composite in the whole 
range of aluminum particle content. In the case of 
the present study, values of the coefficients Cl and 
Cz are calculated by plotting the logarithm of the 
thermal conductivities of the experimental data 
against volume contents of the particles, C1 = 0.9923 
and Cz = 1.0076. Since it uses the actual experi- 
mental data to fit a curve, it is natural that this 
model best predicts the effective thermal conductiv- 
ities of filled systems in the whole range; the main 

disadvantage associated with this method is that 
experimental data are needed to calculate C1 and Cz 
or there must be a list of values C1 and Cz available 
for each matrix material and filler. 

Mechanical Properties 

From the stress-strain curves, tensile strength, 
elongation at break, and modulus of elasticity are 
determined and are presented in Figures 4 through 
6 as functions of volume fractions of aluminum 
powder. Figure 3 compares the stress-strain behav- 
ior for pure HDPE and for composites with 10% 
and with 20% aluminum powder fillers. Results of 
tensile strength versus volume fraction of A1 are 
given in Figure 4. From this figure, it may be noticed 
that there is a gradual decrease in the relative tensile 
strength ( g c / g p ) ,  as the volume fraction of filler in- 
creases; for 50% of aluminum filler, the tensile 
strength is 25% of the pure HDPE values, which is 
25.685 N/mm2. It may be seen from Figure 4 that 
the values predicted by eq. (8), with b = 1.1 corre- 
sponding to dense hexagonal packing of particles, 
follow the experimental results quite well. 

Results of elongation at break versus volume 
fraction of aluminum are given in Figure 5,  and the 
experimental values are compared with the results 
calculated from the model developed by Nielsen. It 
may be noticed from this figure that elongation at  
break decreases more rapidly than what may be pre- 
dicted from the Nielsen model up to 20% A1 content. 
Between 20% and 45% of A1 content, the elongation 
at break is nearly constant. 

Results of modulus of elasticity versus volume 
fraction of aluminum are given in Figure 6, the ex- 
perimental results are compared with the values 
calculated from equations (9) and (10). For low-vol- 
ume fraction of aluminum particles (up to about 
12%), Einstein’s equation, which assumes perfect 
adhesion between the particles and the polymer, 
matches quite well with the experimental results. 
For higher particle contents, up to 20% Alparticles, 
eq. (lo), which assumes that the polymer matrix slips 
by spherical particles, explains experimental results 
in this region. For particle content greater than 20%, 
filler particles begin to form aggregates, as also has 
been noticed from microscopic studies (Fig. 7). The 
bond between the filler particles is not as strong as 
that between the matrix and the particles; there may 
be voids forming with the application of a tensile 
load, which explains the decrease in the modulus of 
elasticity of high particle content. 
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